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The objective of this paper is to summarise available literature on the concentrations and emissions 
of nitrous oxide from ruminant livestock buildings and manure management systems (storage and 
treatment units). Ruminant production operations are a source of numerous airborne contaminants, 
especially  gases. Nitrous oxide is generated from manure decomposition,  during storage and 
treatment as well as field application, formed by nitrifying bacteria in two processes: nitrification 
and denitrification. The major contributor is normally the denitrification process under anaerobic 
conditions, while nitrification under aerobic conditions can also contribute. The quantification of 
N2O emissions or emission rates from ruminant buildings, land surfaces, manure storage facilities 
and manure applied on land is being intensely researched in many  countries. Recent studies on 
the effects of environmental temperature, housing, feed and pasture, feeding, internal and genetic 
factors, and emission from excrements on N2O production are discussed. Finally, emission factors 
for dairy and beef cattle are listed in tables.
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CM − concentrate mixture; CP − crude protein; CS − corn silage; d − day; DIM − days in milk; 
DL − deep litter; DM − dry matter; DMI − dry mater intake; FC − flux chamber; FTIR − Fourier 
transform infrared spectroscopy; GC − gas chromatography; GLAS − emissions measuring from 
ground-level area sources; GS − grass silage; h − hour; H − hay; HC − Holstein cattle breed; 
hd − head; HE − heifers; hs − hours; LBW − live body weight; LBWG − gain of live body 
weight; LU − livestock unit (500 kg of LBW); LSU − livestock standard unit (grazing equivalent 
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of 1 adult dairy cow producing 3 000 kg of milk annually, without concentrates); M − month; 
MBIGA − mass balance method from 24 h gas sampling; MF − milk fat; MJ − mega joule; 
MP − milk protein; MR − milk replacer; MS − manure system; MY − milk yield; N − nitrogen; 
NH3 − ammonium; OPL − open-path laser; PAR − parity; PIGM − Photoacoustic infrared gas 
monitor INNOVA; ppmv − parts per million volume; RC − respiration chamber; S − silage; 
TDL − Tuneable Diode Laser absorption spectrometer; TMR − total mixed ration; yr − year; 
WS − wheat silage; wk − week.

Nitrous oxide is an important greenhouse gas with 298 times or 310 times 
more potent the global warming potential than CO2 [Borhan et al. 2012, Boon et 
al. 2014]. Atmospheric nitrous oxide concentrations have been increasing since the 
industrial revolution and currently account for 6% of total anthropogenic radiative 
forcing [Davidson 2009]. Tropospheric N2O concentrations have increased at a rate 
of 0.73 ppb.yr-1 over the last three decades [Uschida and Clough 2015]. Nitrous 
oxide emissions caused by human activities represent more than two thirds of the 
total emissions [Regaert et al. 2015]. Anthropogenic activities are predominantly 
responsible for this rate of increase with fertilising during crop cultivation stage 
and animal excreta being primarily responsible [Uschida and Clough 2015, Pardo 
et al. 2015]. Nitrogen volatilisations occur during and after production, storage and 
application of organic and mineral fertilisers [Guerci et al. 2013].

The generation rates of nitrous oxide vary depending weather, time, species, 
housing, manure handling system, feed type, and management system. Therefore, it 
is extremely difficult to reliably predict the concentrations and emissions of these 
constituents.

The main sources of N2O from agriculture are connected with nitrification and 
denitrification processes in the soil. Farms primarily emit N2O arising mainly from 
nitrogen fertilisers (organic manures or inorganic fertilisers) applied to the soil, direct 
N deposition by housed animals, or manure storage [Whalen et al. 2000, Crosson et 
al. 2011, Adler et al. 2015].

In many countries one of the problems facing ruminant producers is disposal of 
manure due to the growing concerns over environmental pollution. It appears that 
management practices (feeding, slaughtering age) and manure treatment, especially 
manure removal frequency, are presented as efficient ways to reduce emissions.  
However, generally variability in the literature results results from the different 
measurement methods and equipment used.

Several mitigation techniques are available to reduce N2O emissions from barns. 
However, some strategies show contradictory effects depending on the conditions and 
the respective gas. 

 Creating

The nitrous oxide is formed by nitrifying bacteria in two processes. One is 
referred to as nitrification and takes place under aerobic conditions, while the other 
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is named denitrification and occurs under anaerobic conditions [Clough et al. 2003, 
Chianese et al. 2009a, Bell et al. 2015a].  According to Philippe and Nicks [2013], the 
formation of N2O proceeds during incomplete nitrification/denitrification processes 
that normally convert NH3 into non-polluting N2. If conditions are suboptimum and 
these processes do not run to completion, the air-polluting volatile intermediates N2O 
(nitrous oxide) and NO (nitric oxide) are emitted [Groenestein et al. 1996, Pahl et al. 
2001, Wolter et al. 2004].

Nitrification progresses under aerobic conditions where ammonium is first oxidised 
to nitrite, and nitrite is then converted to nitrate with N2O as a by-product [Oenema et al. 
2005, Kebreab et al. 2006, de Klein and Eckard 2008, Saggar et al. 2015, Li et al. 2012]. 
The ratio of denitrification N conversion to N2O  revealed nitrification as the major N2O 
producing process at all sites. Predictors of temporal changes in N emissions include 
nitrate, pH and temperature, indicating the heterogeneity of management [Monaghan 
and Barraclough 1993, Mogge et al. 1999]. The nitrification process occurrs in animal 
housing mainly in the surface layer of the manure [Montes et al. 2013].

Denitrification is a series of microbial reactions during dissimilated NO₂− 

reduction when the oxygen (O2) supply is limited [Chadwick et al. 1999, Pahl et al. 
2001, Oenema et al. 2005, Kebreab et al. 2006, de Klein and Eckard 2008, Saggar et 
al. 2013, Li et al. 2012, Akiyama et al. 2010, Li et al. 2014 b, Li et al. 2015, Regaert 
et al. 2015, Alberdi et al. 2016]. However, no correlation was found between N2O 
concentration and temperature or O2 concentration. Initial N2O emission is relatively 
high. Obviously, N2O is produced mainly at the beginning by thermophilic organisms 
[Wolter et al. 2004]. In their  study Selbie et al. [2015] found that N2 emissions 
accounted for 95% of gaseous N losses, with 55.8 g N. m-2 emitted as N2 in the process 
of co-denitrification, compared to only 1.1 g N m-2 from conventional denitrification. 
This highlights the large N2 fluxes and the importance of co-denitrification in 
contributing to N dynamics in urine amended grassland soil. 

The N2O production during denitrification is promoted by the presence of NO3−, 
N2O reductase activity, heterotrophic bacteria, reductants such as organic carbon, lack 
of oxygen and low availability of degradable carbohydrates, while it is also affected by 
pH, moisture content, soil porosity, amount of solids, under soil and climatic factors 
[Monaghan and Barraclough 1993, Beauchamp 1997, Chadwick et al. 2000, Dobbie 
and Smith 2001, Külling et al. 2001, Saggar et al. 2004ab,  Kebreab et al. 2006, de 
Klein and Eckard 2008, Chianese et al. 2009a, Montes et al. 2013, Saggar et al. 2013, 
Li et al. 2014b, Li et al. 2015, McGahan 2016].

Housing

We may observe global interest in quantification of N2O emissions from animal 
housing operations [Rahman et al. 2013]. It is well known that the dairy sector 
contributes to climate change through emission of greenhouse gases, mainly N2O 
[Ross et al. 2014, Podkowka et al. 2015]. According to Sneath et al. [1997], dairy 
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cattle hounding facilities produce twice as much N2O emissions than piggery facilities 
(per 500 kg LBW). However, Rzeźnik and Mielcarek [2016] reported opposite results 
(dairy cows 1.5 g·d-1·LU-1 vs. pigs 3.2 g·d-1·LU-1).  Borhan et al. [2012] found N2O 
emissions from a free-stall dairy cow housing at 3.4 g.d-1. In a similar study emissions 
from a beef feedlot were reported as 0.68 g.d-1 [Borhan et al. 2011a]. 

Most of these N2O losses depend on a variety of factors, including surface 
conditions of open-lot dairy or beef feedlot facilities.  Manure management practices 
on farms vary, but usually pens are cleaned several times a week or after the turnings, 
which creates conditions for emissions off the pen surface or barn floors [Eckard et al. 
2003, Chianese et al. 2009b, Maeda et al 2010, Van Middelaar et al 2013, Montes et 
al 2013]. Quantifying N2O from feedlots is difficult due to the low N2O concentration 
in free air [Redding et al. 2015, Sun et al. 2016]. The pen surface was estimated to 
contribute about 84% of the aggregate N2O  emission [Montes et al. 2013]. 

Owen and Silver [2015] compiled published data on field-scale measurements 
of N2O emissions from dairies. Whole barns had the greatest N2O emissions with 
10.3 kg.d-1.yr-1. Barn floors and hardstandings, surfaces which were scraped or flushed 
frequently, generally release low N2O emissions (0.03 kg.d-1.yr-1, 0.0004 kg.d-1.yr-1). 
According to Leytem et al. [2010], open lot areas generate the greatest emissions of 
N2O, contributing 57%, respectively, to total farm emissions. 

Corrals and solid manure piles are the next largest N2O source with 1.5 kg.d-1.yr-1 
and 1.1 kg.d-1.yr-1 [Owen and Silver 2015]. Nitrous oxide emissions from anaerobic 
lagoons and slurry stores are also substantial, with 0.9 kg.d-1.yr-1  and 0.3 kg.d-1.yr-1, 
respectively [Owen and Silver 2015]. 

 Amon et al. [1999] compared N2O emissions from solid and liquid manure 
storage at a tie-stall housing for dairy cattle and found no differences between these 
manure storage systems. However, straw cover and slurry aeration showed negative 
environmental effects and thus are not recommended [Amon et al. 2006b].

Higher manure density observed with sawdust may impair the composting process, 
which normally increases manure temperature and promotes air exchange through 
the compost heap. Consequently, NH3 emissions are reduced, which increases the 
amount of ammonium available for non-thermopilic nitrifying bacteria, with higher 
N2O emissions released as a consequence [Sommer 2001, Hansen et al. 2006].

In a deep-litter housing system, animals are kept on a thick layer of a mixture of 
manure with sawdust, straw or woodshavings. In this system microbial processes are 
stimulated to enhance composting processes, nitrification (aerobic conditions) of NH3 
and denitrification (anaerobic conditions) of nitrate [Groenestein et al. 1996]. Deep-
litter bedding is associated with high greenhouse gas production (+125% compared 
to slatted floor) and slurry composting on straw is associated with high NH3 emission 
(+15% compared to slatted floor) [Rigolot et al. 2010]. 

Groenestein et al. [1996] showed increasing N2O emission with decreasing O2 
concentration in the straw bed, indicating that N2O is mainly produced in the course 
of nitrification. Also, it appears that deep-litter systems emit more N as NH3 and that 
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air-polluting nitrogen gases were not reduced with traditional housing systems. This 
leads to the conclusion that deep-litter systems are not recommended [Groenestein et 
al. 1996]. 

Chadwick et al. [1999] showed that dairy cattle housing with slurry-based systems 
have significantly lower N2O emissions than dairy housing that used straw bedding. 
The straw flow system thus combined recommendations of animal welfare and 
environmental protection, although emissions during storage may be increased due to 
the higher average retention time in the store [Amon et al. 2006a, Amon et al. 2007]. 
Increasing the amount of substrate also impacts emissions, typically with reduced N2O 
production [Yamulki et al. 2006]. The relatively large net N2O flux from liquid manure 
storage is associated with the predominantly anaerobic conditions typical of unaerated 
systems. Nitrogen in liquid manure is mostly found in the form of ammonium and 
organic N, and while anaerobic lagoons are as a rule anaerobic, aerobic conditions 
which could promote denitrification exist at inlets. Other N2O formation reactions 
are also possible, such as denitrification of nitrate (NO3-) produced through anaerobic 
NH4+ oxidation [Maeda et al. 2010, Owen and Silver 2015].

Feed and pasture

Animal feeding operations are an important source of pollutants affecting air quality 
due to nitrous oxide (N2O) and nitric oxide (NO) emissions [Li et al. 2012]. Dietary 
lipids also may increase manure emissions either through reduced ration digestibility 
or increased N contents (if lipids are supplied from oil cakes rich in CP [Hristov et al. 
2013, Gerber et al. 2013]. Nitrates can possibly increase N emissions as their addition 
to the ration may lead to increased urea amounts excreted in urine. Results of Luo 
et al. [2015] showed that feeding forage rape reduced the N2O-N emission factor 
during the 3-month measurement period for sheep urine by about 60%, compared 
with feeding perennial ryegrass [Luo et al. 2015]. Shifting N excretion from urine to 
faeces by supplementing the diet with tannins or feeding tanniferous forages can also 
decrease the N release rate from manure [Hristov et al. 2013]. 

In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the 
soil in animal urine  [Bhandral et al. 2003a, Di and Cameron 2006].  The N excreted 
by sheep and cattle onto grazed pastures provides high, localised concentrations of 
available N and C in soils, and is the main source of anthropogenic N2O emissions 
[Saggar et al. 2004a,b]. Nitrous oxide emissions from field urine/faecal deposition 
during grazing (i.e. pasture, paddock, range emissions) are principally based on the 
amount of N excreted/hd for each population category [Crosson et al. 2011].

The results of Ball et al. [1997] suggested that denitrification is the main N2O 
production process at grassland sites. A number of studies have shown that soil 
denitrification and N2O emission rates are highly variable throughout the season, with 
high rates associated with grazing and fertiliser application in grazed pastures [Ruz-
Jerez et al. 1994, Williams et al. 1998, Luo et al. 1999, Saggar et al. 2004a,b]. The 
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highest losses by denitrification occurred in winter when soil moisture was at or above 
field capacity for extended periods [Ruz-Jerez et al. 1994].

Denitrification losses increased with temperature in pastures treated with cattle 
slurry, while N losses from pastures treated with farmyard manure remained unaffected 
by temperature [Saggar et al. 2004b].  The fluxes were more variable during winter and 
spring, when the soils were wet, than during the dry autumn period [Ruz-Jerez et al. 
1994, Carran et al. 1995, Saggar et al. 2004a, Saggar et al. 2003, Saggar et al. 2015]. 

Large emissions were detected immediately following cow urine application 
to pasture. These coincided with a rapid and large increase in soil water-soluble C 
levels, some of the increase being attributed to solubilisation of soil organic matter 
by high pH and ammonia concentrations [Monaghan and Barraclough 1993]. Overall, 
urine significantly increased N2O emissions up to 14 days after application, with rates 
amounting to 6 kg N ha-1 d-1 [Saggar et al. 2004b].

Klein et al. [2003] applied cow urine and synthetic urine to pastoral soils. The 
largest emission factor was found in a poorly drained soil, while the lowest emission 
factor was recorded for a well-drained stony soil. The N2O emissions did not reach 
background levels 4 months after urine application. At a study of Lovell and Jarvis 
[1996] urine was added to intact turfs taken from long-term permanent pasture on clay 
loam and sandy loam soils. Emissions of nitrous oxide following urine application were 
high (0.36 μg N2O-N.m-2 min-1 and 29 μg N2O-N.m-2 min-1), but limited in duration (<40 
days).

Sometimes the results of published investigations are not comparable and most 
of them do not meet the minimum requirements mentioned above. In certain cases, 
no significant emissions were registered for N2O since they were consistently near the 
detection limit for the measuring equipment.

However, the relationship between small-scale studies and actual field emissions 
is poorly constrained, with only one study making a qualitative comparison. Direct 
measurements of N2O emissions from animals are scarce. Mosier et al. [1998] 
concluded that annual N2O emissions from many agricultural systems may be 
substantially underestimated, because many studies of field-based N2O emissions 
did not account for cold season emissions. All N2O data should be recalibrated for 
reference purposes [Osada et al. 1998]. Emissions of nitrous oxide arise both directly 
and indirectly from multiple on-farm sources [Ross et al. 2014].

As a result, there has been limited information on N2O emissions from feedlot 
pens, particularly using non-intrusive micrometeorological techniques. Most studies 
on trace gas emissions focus individually on N2O. The emissions of this gas from 
animal wastes and waste-management systems are influenced by very different 
factors [Saggar et al. 2015].

J. Broucek  
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Conclusions

Substantial research has been conducted 
to quantify the emission rates of N2O from 
ruminant facilities and waste management 
systems. Much of the work related to 
emission rates has been conducted over the 
past twenty years. The knowledge summarised 
in this paper shows substantial variability 
in emission rates. In part this variability is 
inherent in the ruminant husbandry systems 
and in part is due to external influences such as 
climatic differences and feed rations. Manure 
management practices are of considerable 
importance, especially the frequency of 
manure removal.   

For example slatted housing reduces the 
emitting floor surface. Dairy cattle housing 
facilities with slurry-based systems have 
significantly lower N2O emissions than 
dairy housing systems with straw bedding. 
However, increasing the amount of substrate 
impacts emissions, typically with a reduction 
in N2O productions.  Moreover, the straw flow 
system is associated with slightly reduced 
N2O emissions. In grazed pasture systems 
large emissions were detected immediately 
following cow urine application to the pasture. 
Farmers should prevent soiling of the solid or 
passage sections of the floor. 

However, a main contribution to the 
variability in the literature sources results from 
the use of differing measurement methods 
and equipments. Accurate quantification of 
emissions is difficult, since so many factors 
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are involved (e.g. time of year and day, temperature, humidity, wind speed, ventilation 
rates, solar intensity, housing type, manure characteristics, stocking density  and 
age of animals).  Furthermore, there are no standardised methods for the collection, 
measurement and calculation of such constituents, resulting in the variability and 
considerable ranges of recorded values. 

This review indicates a definite need for the development and application of 
standard methods to measure N2O emission rates for gases from ruminant facilities.
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