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ABSTRACT

Diabetes mellitus (DM) is classified into two groups: type 1 diabetes (T1DM) and type 2 diabetes (T2DM). T1DM requires 
insulin treatment. T2DM is characterized by insulin resistance, and it can be treated with variety of pharmacological 
and other compounds to alleviate or delay diabetes complications. The primary factors in the onset of DM are 
hyperglycaemia and hyperlipidaemia. Diabetic complications are grouped as macrovascular (heart disease, stroke and 
others) and microvascular (diabetic nephropathy, neuropathy, and retinopathy). For diabetes research several models 
have been used. In this review we provide an introduction to diabetes mellitus and its complications, currently used 
rodent animal models in diabetes research, the main results concerning therapeutical agents and the main targets. 
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INTRODUCTION

Diabetes mellitus (DM) is a serious disease 
noted for its typical symptoms as hyperglycaemia 
and relative or complete insulin deficiency (King and 
Bowe, 2016). It was estimated that the prevalence  
of diabetic patients worldwide will reach 380 million  
by 2025 (Ramachadran and Snehalatha, 2010). DM 
is classified into two types. Type 1 DM or insulin-
dependent diabetes mellitus (IDDM) is autoimmune 
disease caused by T cell-mediated damage of 
pancreatic β-cells of pancreas. This condition  
results in total insulin deficiency (Bluestone et al., 
2010; Daneman, 2009). It is unclear what triggers 
the autoimmune response but environmental 
factors as viral infections, toxins, psychosocial 
factors are though to play an important role 
(Akerblom and Knip, 1998). At least 20 genes of 
the major histocompatibility complex (MHC) are 
implicated in type 1 diabetes (Adorini et al., 2002). 
Type 2 DM or non-insulin-dependent diabetes  

mellitus (NIDDM) is characterized as the progressive  
worsening of insulin resistance, hyperglycaemia 
(Adeghate et al., 2006; Kleinert et al., 2018) and 
lack of adequate compensation by pancreatic beta 
cells (Khan, 2003). There is a strong hereditary 
component, but obesity and a sedentary lifestyle 
play an important role in the development of 
this disease (Ali, 2013; King and Bowe, 2016). 
Insulin resistance is connected with decrease 
in insulin receptors and insulin receptor kinase 
activity, resulted in decreased glucose transporter 
4 (GLUT4) translocation due to impaired 
signalling (Lencioni et al., 2008). While T2DM is 
a multifactorial and complex disorder, it is clear, 
that obesity-induced insulin resistance accelerates 
pancreatic islet destruction and thus the onset of 
T2DM (Khan et al., 2006). In T2DM overweight 
and obesity contribute to insulin resistance 
through several pathways, including an imbalance  
in the concentrations of hormones (increased leptin 
and glucagon, reduced adiponectin), increased 
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concentrations of cytokines (tumour necrosis 
factor α, interleukin 6), suppressors of cytokine 
signalling, other inflammatory signals, and possibly  
retinol-binding protein (Wellen and Hotamisligil, 
2005).

Glucose and insulin metabolism
Generally, hyperglycaemia is a primary 

factor in the onset of DM. It is unable to efficiently 
transport glucose from the blood into tissue. 
Thus, the measurement of plasma glucose level 
is important in diagnosis (Min and Park, 2010). 
The lipid profile of T2DM is defined by increased 
triglycerides level, decrease in high-density 
lipoproteins and increased very low-density 
lipoproteins (Therond, 2009). Insulin promotes 
anabolic processes and inhibits catabolic processes  
in pancreas, liver, skeletal muscle, adipose tissue 
and intestines. When glucose concentration 
exceeds the upper limit of normal range, 
glucokinase and glucose transporter 2 (GLUT 2) are 
activated in the pancreas followed by increasing 
intracellular ATP level. Consequently, ATP-sensitive 
K+ channels in the membrane of β-cells close, and 
the plasma membrane depolarizes what opens 
voltage-dependent Ca2+ channels. Then Ca2+ ions 
influx and induce exocytosis of insulin vesicles from 
pancreatic β-cells into portal circulation (Prentki, 
1996). After reaching the liver, insulin stimulates 
glycogen and triglyceride synthesis, but inhibits 
glycogenolysis, ketogenesis and gluconeogenesis 
(Capeau, 2008). Higher insulin concentration 
suppresses hepatic glucose output and stimulates 
its uptake by the skeletal muscle and adipose tissue 
(Khan and Pessin, 2002). The dysfunction of insulin 
signalling in hepatocytes results in overall insulin 
resistance in the liver (Valverde et al., 2003). 

Insulin stimulates glucose uptake, protein 
and glycogen synthesis in the skeletal muscle, but 
inhibits protein degradation and glycogenolysis 
(Turcotte and Fisher, 2008). The dysfunction of 
insulin signalling pathways in the skeletal muscle is 
a factor in the diabetes progression (Assano et al., 
2007).

Adipose tissue is responsible for the glucose 
utilization. Adipocytes secrete pro-inflammatory 
cytokines as interleukin 6 (IL-6), tumour necrosis 
factor alpha (TNF-α) and anti-inflammatory 
cytokines (adiponectin) (Sowers, 2008). A reduced 
level of adiponectin and increase in IL-6 and TNF-α 

may induce or worsen insulin resistance in the 
adipose tissue. Dysfunction in the adipose tissue or 
adipocytes is associated with T2DM (Bluher, 2009). 

Diabetes and its complications
Diabetic complications are acute 

(ketoacidosis, ketoacidic coma) and chronic 
(macrovascular, microvascular) (Min and Park, 
2010). Macrovascular complications include 
mainly myocardial infarction, congestive cardiac 
failure and stroke. These complications account for  
more than 70 % of diabetic mortality (Hyvarinen 
et al., 2009). Microvascular complications include 
diabetic neuropathy, nephropathy and retinopathy 
(Basit et al., 2004). The most common diabetic 
complication is diabetic neuropathy (Basit et al., 
2004). It is characterized by progressive nerve fibre 
loss, clinical signs and symptoms as paraesthesia, 
pain, loss of sensation (Silva et al., 2009). Diabetic 
retinopathy is a neurodegenerative state resting 
in structural and functional changes in retina cells 
(Silva et al., 2009). Diabetic nephropathy is defined 
by superfluous accumulation of extracellular matrix 
with thickening of glomerular and tubular basement 
membranes and an increase in the mesangial matrix, 
which ultimately progresses to glomerulosclerosis 
and tubule-interstitial fibrosis (Kanwar et al., 
2008). T2DM is closely associated with obesity 
and it is the main pathological cause of insulin 
resistance (Khan and Flier, 2000). Abnormalities 
in other hormones, such as reduced secretion  
of the incretin glucagon-like peptide 1 (GLP-1), 
hyperglucagonaemia and raised concentrations 
of other counter-regulatory hormones, also 
contribute to insulin resistance, decreased insulin 
production and hyperglycaemia in T2DM (Stumvoll 
et al., 2005; Kahn et al., 2006).

Both, T1DM and T2DM ultimately lead to 
pancreatic β-cells dysfunction (Bonner-Weir et al.,  
1983). They are associated with long-term 
complications raised after long exposure to elevated 
blood glucose concentration. The pathogenesis  
of the development of this complication can be 
often more important for the study than the manner 
in which the animals become hyperglycaemic  
(King and Bowe, 2016). The uncontrolled 
hyperglycaemia has harmful impacts on the organs 
that are pivotal in the homeostasis control and 
results in the development of diabetes (Fig. 1).
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Current therapeutic strategies for T2DM  
are limited and include insulin and oral antidiabetic 
agents that stimulate pancreatic secretion, reduce 
hepatic glucose production, delay digestion and 
absorption of intestinal carbohydrates or improve 
insulin action. These agents, however, suffer 
from inadequate efficacy and number of adverse 
effects (Bailey, 2005). In the scientific community  
the interest is raised to evaluate raw or isolated 
natural products used in the experimental diabetes 
study (Table 1). Natural supplements are widely 
used around the world to treat diabetes (Fröde and 
Medeiros, 2008). 

Rodent animal models of diabetes mellitus
An animal model for biomedical research 

is one in which normative biology or behaviour 
can be studied, or in which a spontaneous or 
induced pathological process can be investigated, 
and in which the phenomenon is one or more 
respects resembles the same phenomenon in 
humans or other animal species (Chatzigeorgiou 
et al., 2009). Diabetes research on humans is not 
possible, because provocation of DM is strictly 
impermissible. Therefore, animal models of DM 
are greatly useful and advantageous in biomedical 
studies. They promise new insights into human 
diabetes, new methods of treatment (Srinivasan 
and Ramarao, 2007) and the utility of therapeutic 
agents (Chen and Wang, 2005). The existing 
therapeutic approaches to treat diabetes mellitus 
and obesity, which are saving many lives every 

day, were discovered, validates and optimized on 
animal models (Kleinert et al., 2018). There are 
many different animal models of diabetes available 
including spontaneous, induced and transgenic 
models (King and Bowe, 2016). Most appropriate 
model for diabetes research is rodent model. 
Rodents are easy to handle, small, economically 
effective and have a short generation interval 
(Min and Park, 2010). Animal models used for 
investigation of T1DM are: alloxane-induced, 
streptozotocin-induced, non-obese diabetic (NOD) 
mouse models, and bio-breeding (BB) rat model 
(Kim et al., 1998). Alloxane, a uric acid derivate, 
which selectively destroys pancreatic β-cells 
through induction of oxidative stress, what causes 
insulin deficiency and hyperglycaemia (Rerup, 
1970). A nitrosureas derivative isolated from 
Streptomyces achromogenes - streptozotocin (STZ) 
destroys pancreatic β-cells similarly as alloxane 
(Yamamoto et al., 1981). Animal models, where 
the animals spontaneously develop T1DM are 
NOD mice and BB rats (Makino et al., 1980). STZ 
is favoured over alloxane because it is more stable 
and less toxic (Kleinert et al., 2018). Although 
both methods (alloxane and STZ) continue to 
be used in diabetes research, they are often 
criticized as not accurately reflecting the human 
T2DM phenotype. Thus, many investigators 
rely on specific rodent strains that model key 
features of T2D. These genetic models have been 
widely used to explore the pathophysiology of 
obesity and T2D, as well as in preclinical drug  

Figure 1. Target organs in development and treatment of DM
 (Modified according to Min and Park, 2010)
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development (Bedow and Samuel, 2012). 
Rodent model for T2DM includes the 

genetically altered Zucker diabetic fatty (ZDF) rats, 
Otsuka Long Evans Tokushima fatty (OLETF) rats, 
Kuo Kondo (KK) mice, Goto Kakizaki (GK) rats, 
spontaneously diabetic Tori (SDT) rats, ob/ob+/+ 

mice, and db/db+/+ mice (Kim et al., 1998). OLETF 
rats develop diabetes at around 18-25 weeks of age, 
mostly males. They suffer from polyphagia, mild 
obesity, hypertriglyceridemia, hyperinsulinemia 
and impaired glucose tolerance in 16 weeks of age 
(Kawano et al., 1992). KK mice exhibit hyperphagia, 
insulin resistance and hyperinsulinemia. It is  
a polygenic model of obesity and T2DM (Reddi 
and Camerini-Davalos, 1988). The ob/ob+/+ mice 
are characteristic by a mutation in the leptin gene, 
manifested as obesity, hyperglycaemia, impaired 
glucose intolerance and hyperinsulinemia (Dubuc, 
1976). The db/db+/+ mice have a leptin receptor 
mutation and are spontaneously hyperphagic, 
obese, hyperglycaemic, hyperinsulinemic and 
insulin resistant within the first month of life 
(Shariff, 1992). GK rat is a non-obese Wistar sub-
strain, which develops type 2 diabetes mellitus early 
in life (Bedow and Samuel, 2012). SDT is inbred 
strain of Sprague-Dawley rat. Male SDT rats show 
high plasma glucose levels by 20 weeks, pancreatic 
islet histopathology, including haemorrhage in 
pancreatic islets and inflammatory cell infiltration 
with fibroblasts. Prior to the onset of diabetes, 
glucose intolerance with hypoinsulinemia is also 
observed (Sasase et al., 2013). Generally, rats 
are more appropriate model when compared 
to the mice as many traits, the genetics and 
pathophysiology in rats has proven more relevant 
to human disease (Betz and Conway, 2016).

ZDF rats
In our laboratory we use the Zucker diabetic 

fatty rat (ZDF) as animal model for the research 
(Capcarova et al., 2017; Kalafova et al., 2017; 
Capcarova et al., 2018). ZDF rat is commonly used 
as a model for the study of diabetes (Cefalu, 2006). 
ZDF rat was derived through selective breeding of 
hyperglycaemic obese Zucker rats. Zucker fatty (ZF) 
rats have spontaneous mutation “obese” (fatty) and 
it was found in the rat stock of Sherman and Merck, 
by Zucker, Harriet Bird Memorial Laboratory, Stow, 
Massachusetts, USA in 1961. ZF rats are resulted 

from the simple autosomal recessive (fa) gene on 
chromosome 5 (Srinivasan and Ramarao, 2007). 
These animals have a mutated leptin receptor 
leading to hyperphagia and obesity at 4 weeks 
of age (Philips et al., 1996) along with increased 
growth of subcutaneous fat depot (Durham 
and Truett, 2006). It is associated with mild 
hyperglycaemia, insulin resistance, mild glucose 
intolerance, hyperlipidaemia, hyperinsulinemia 
and moderate hypertension (Durham and Truett, 
2006). They have impaired glucose tolerance rather 
than apparently diabetes (Wang et al., 2014). 
Consequently, a mutation in this strain leads to 
a sub-strain with an overtly diabetic phenotype - 
the Zucker diabetic fatty (ZDF) rats (Wang et al., 
2014). ZDF rats are less obese than ZF rats having 
a decreased beta cell mass leading to inability to 
compensate for severe insulin resistance (Pick et 
al., 1998). ZDF rats carry an autosomal recessive 
defect in the β-cell transcription machinery that 
is inherited independently from the mutation in 
leptin receptor (Lepr). This animal model develops 
obesity with a severe diabetic syndrome, with 
sustained and early-onset hyperglycaemia and 
progression to β-cell death, hyperinsulinemia 
and premature death (Peterson et al., 1990). 
ZDF rats appear to develop diabetes because of  
an inability to increase β-cell mass (Tomita et al., 
1992, Cefalu, 2006). This strain is highly useful for 
the investigation of mechanism of T2DM (Srinivasan 
and Ramarao, 2007).

There are sex differences in ZDF rats for 
phenotypes of diet-induced insulin resistance and 
glucose intolerance. Male rats are the most affected 
(Nadal-Casellas et al., 2012). On normal chow diet, 
male ZDF rats develop severe hyperglycaemia 
and hypoinsulinemia by 4 month of age. Female  
ZDF rats maintain normal level of glucose and 
insulin throughout their life, despite developing 
obesity to a similar extent as the males (Kleinert  
et al., 2018).

ZDF model is used for diabetic studies. There 
is no evidence or validation that a natural plant 
material can serve as a complete replacement 
for insulin. However, several plants and plant 
products have been reported to mimic the effect 
of insulin partially or enhance the effects of very low 
endogenous insulin concentrations (Eddouks et al., 
2012). 
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CONCLUSION

The investigations of diabetes mellitus have 
a long history. The prevalence of DM increased 
dramatically over the recent past, and therefore, 
the further research is required. Animal models for 
study of DM are needed to uncover and understand 
pathophysiology of the disease. This is the key to 
the development of new therapies and treatment. 
There are many various animal models simulating 
T1DM or T2DM, and each model is specific and 
has its own value. However, none of the models 
completely represents the pathophysiology of 
diabetes. The use of particular animal model 
depends on the study scheme.
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