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A MINI-REVIEW
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ABSTRACT

The aim of the present review is to summarize current knowledges of in vitro studies, focused on the determination 
of rabbit stem cells of different origin, based on their cytogenetic examination. Stem cells represent valuable model  
to study the biological traits or processes of health and targeted tissues, affected by various internal or external 
detrimental factors. Furthermore, these cells provide a promising mechanism of treatment of existing human or 
animal diseases. Although recent knowledges based on serious in vitro studies bring positive promises, there are still 
remained a lot of issues focused to the safety of stem cell usage in the context of their clinical application. In this way,  
the stability of the genome across individual generations of passaged cells plays an important role, evaluated on 
the basis of chromosomal profile, including aneuploidy and structural studies. In the given context, various culture 
conditions and manipulations among the studies play a crucial role in the definition of the final chromosomal status.  
Up to date, there are numbers of reliable animal models used as donors of embryonic or somatic stem cells. In this way, 
the rabbit represents an available source with numerous advantages for cytogenetic analysis.
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INTRODUCTION

Stem cells are undifferentiated cells capable 
of self-renewal and of differentiation into specific 
terminally-differentiated cell types. Based on the 
source of derivation, they can be divided into 
somatic stem cells (SSCs) or embryonic stem cells 
(ESCs) (Rebuzzini et al., 2015). Somatic stem cells 
exert a crucial role in the maintenance of tissue 
homeostasis and participate in the repairing 
processes within their specific tissue. The ESCs 
are able to differentiate into almost all mature 
foetal and adult cell types, and thus they are 
defined as pluripotent cells (Cockburn and Rossant, 
2010). While in the embryonic stem cells various 
chromosomal disorder has been widely reported, 
the mesenchymal stem cells are characterized  
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as genetically stable during culture (Borgonovo 
et al., 2014). Mesenchymal stem cells (MSCs) are 
present in many adult tissues (Kang et al., 2012), 
capable of high proliferation and multi-lineage 
differentiation (Jin et al., 2013). Bone marrow 
was the first tissue, where the MSCs (BM-MSCs) 
were identified. Stem cells with this kind of origin 
possess various advantages as are: high osteogenic 
differentiation capacity, well investigated properties 
applied in use with biomaterials and not ethically 
controversial background (Till and McCullough, 
1961; Kang et al., 2012). Invasivity of the BM-MSCs  
harvesting initiates the interest in finding more 
accessible sources of MSCs (Pontikoglou et al.,  
2011). SSCs have been identified in many different 
organs (i.e. skeletal muscle, heart, liver, fat, 
umbilical cord blood or placenta) (Rebuzzini et al.,  
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2015). The potential use of stem cells (SCs) for 
tissue engineering (Katari et al., 2015), regenerative 
medicine (Grompe, 2012), disease modelling 
(Merkle and Eggan, 2013), toxicological studies 
(Seiler and Spielmann, 2011), drug delivery (Li et al.,  
2008) and as in vitro model for the study of basic 
developmental processes implies large-scale in vitro  
culture (Rebuzzini et al., 2015). In vitro, SSCs display 
greater plasticity, showing higher differentiation 
potential than in vivo. In vivo, SSCs can differentiate 
either in one, few or multiple cell lineages and, thus, 
are classified as unipotent (e.g. spermatogonia, 
oogonia), oligopotent (e.g. neural stem cells, 
NSCs) or multipotent (e.g. hematopoietic SCs) 
(Jiang et al., 2002; Franco-Lambert et al., 2009).  
The perspectives of stem cell clinical use is coupled 
with a serious issue about potential risk of forming 
tumours, the migration far away from the site 
of infusion and colonization of other tissues,  
the dedifferentiation of SC-derived differentiated 
cells, the establishment of an incorrect epigenetic 
and genetic status and an abnormal chromosome 
complement (Rebuzzini et al., 2015). On the basis 
of above mentioned facts, it is necessary to provide 
studies deeply focused on the determination of 
cytogenetic traits across generations of cultured 
stem cells. This advice is in accordance to several 
papers with evidence of stem cells difficulty to 
maintain a correct chromosome complement 
during prolonged expansion (Rebuzzini et al., 
2011; Oliveira et al., 2014). As a promising animal 
model and the donor of stem cells for such studies,  
the rabbit has several advantages not only due to 
physiological manipulations ─ more easily carried 
out than those in mice, but also it is phylogenetically 
closer to primates than are rodents (Wang et al., 
2007). For example, several authors have focused 
their force to study the rabbit embryonic stem cell 
behaviour under in vitro conditions (Fang et al., 
2006; Wang et al., 2007). 

Culture Conditions and Chromosomes
The effect of in vitro conditions on genomic 

stability of cells attracts the attention during 
the last years. However, the variability among 
culture protocols applied in different laboratories  
for derivation and culture of SCs complicates the 
identification of the source of such variations. 
The techniques used for cell detachment and 

disaggregation seem to be a major factor affecting 
the maintenance of genome integrity during long 
culture. Mechanical or manual methods (pipetting, 
flushing until the colonies are detached and 
disaggregated) are more gentle ─  less aggressive 
passaging techniques for subculturing and 
preserve better genome integrity than the use 
of enzymes (trypsin, collagenase) (Buzzard et al., 
2004; Mitalipova et al., 2005; Lefort et al., 2008). 
To accelerate steps focused to disaggregation  
a modified enzymatic dissociation solution (0.25 % 
trypsin, 0.1 % collagenase IV, 20 % KSR, and 1 m M 
CaCl2 in PBS), in combination with manual dissection 
for bulk passaging, has been proposed for hESC 
dissociation, demonstrating the maintenance of  
a normal chromosome complement even after more 
than 100 passages (Suemori et al., 2006). Several 
studies were focused on oxygen concentration 
during culture, but with contrasting results. Some 
studies suggested to use the O2 concentrations 
between 1 to 7 % to significantly reduce the incidence  
of aneuploidies in hMSCs (Holzwarth et al., 2010; 
Li et al., 2011; Tsai et al., 2011; Estrada et al., 
2012); whereas, the others recorded increased 
risk of aneuploidies and microsatellite instability 
in mouse NSCs, human bone marrow MSCs and 
human adipose SCs under the O2 concentration 
between 1 and 5 % of chromosomes, even at early 
passages (Oliveira et al., 2012; Ueyama et al., 
2012). High rates of aneuploidy, gaps and breaks 
were reported in hESC lines cultured under 21 % 
concentration of the O2, in comparison with lower 
concentrations (Forsyth et al., 2006; Lim et al., 2011).  
A fundamental component of the SC medium is 
the serum. However, its animal (calf or bovine) 
or artificial (knockout serum only used for ESC 
culture) origin does not seem to play a role in  
the maintenance of genome stability (Inzunza 
et al., 2005; Ludwig et al., 2006). Similarly,  
the choice of a cell feeder layer (mouse embryonic 
or immortalized fibroblasts) or of supportive 
matrixes (gelatine, fibronectin, etc.) during the 
derivation and maintenance of stem cell lines 
does not seem to influence either the onset or 
the restraint of aberrations in stem cells genome 
(Cowan et al., 2004; Draper et al., 2004; Guo  
et al., 2005; Maitra et al., 2005; Mitalipova et al., 
2005; Imreh et al., 2006; Sugawara et al., 2006;  
Rebuzzini et al., 2008).
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Techniques for Karyotype Analyses
Several techniques are currently available 

to investigate the integrity of the chromosome 
complement of a cell line. Each method has 
advantages and disadvantages in terms of sensitivity,  
resolution and final costs (Catalina et al., 2007). 
Conventional banding techniques (G-, Q- or DAPI) 
allow a snapshot of the entire chromosome 
complement and the ordinary gross karyotype 
control of a cell line. These techniques, providing 
300–400 stained bands, facilitate the detection of 
incorrect chromosome numbers (aneuploidies), 
mosaicism and large structural chromosome 
abnormalities, such as translocations, deletions or 
insertions.

Chromosomal status of cultured cells
Number of studies on chromosome variability 

have been performed on human mesenchymal 
stromal cells (MSCs) derived from the bone marrow. 
Independent laboratories reported contrasting 
results on the accumulation of chromosomal 
aberrations during in vitro culture (Ben-David et al., 
2012; Sensebé et al., 2012). Some authors reported 
that human bone marrow-derived MSCs remain 
chromosomally stable throughout long-term 
culture, whereas others claimed the occurrence of 
numerical and structural chromosome aberrations 
within passages of in vitro culture (Pittenger and 
Martin, 2004; Soukup et al., 2006; Bernardo et al., 
2007; Zhang et al., 2007; Sensebé et al., 2012). 
The study of Tomkova et al. (2017), focused on 
the aneuploidy determination of G-stained rabbit 
endothelial (peripheral blood) and mesenchymal 
(bone marrow, 3rd passage) metaphase stem cells, 
shows 73.3 % and 66.6 % diploidy or 26.6 % and 
33.5 % aneuploidy, respectively. The results are 
partly similar to those of Kovacik et al. (2017), who 
focused to the chromosomal status monitoring 
of cultured rabbit stem cells isolated from  
the amniotic fluid and detected aneuploidy in 
the first three passages as follows: 18.18 %;  
25.81 % and 23.53 %, respectively. Mentioned 
authors, on the basis of statistical analysis outputs, 
found no significant difference in the aneuploidy 
presence between stem cell cultures evaluated  
at various passages. These findings are in accordance 
to the results of Asadi-Yousefabad et al. (2015). 

CONCLUSION

Current science provides wide options and 
promises in the use of stem cells with an expected 
success. This statement is supported by many 
scientific studies performed on a wide spectrum 
of stem cells isolated from and applied to different 
animal models. However, there are still remained 
studies with inconsistent results, which reveal not 
only positive, but also negative issues coupled with 
isolation, culture or determination of evaluated 
samples. Based on this fact, it seems reasonable 
to perform in vitro experimental studies in order 
to bring more detailed and clear answers, how 
to extract benefits from stem cell features in 
human and animal field. In this way, cytogenetic 
studies are useful tool to acquire early information 
about the genetic background of growing cells 
in the context of their future clinical use, basing  
on the chromosomal number and structure.
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